Rasch fit statistics and sample size considerations for polytomous data



Smith, Adam B and Rush, Robert and Fallowfield, Lesley J and Velikova, Galina and Sharpe, M (2008) Rasch fit statistics and sample size considerations for polytomous data. BMC Medical Research Methodology, 8 (1). p. 33. ISSN 14712288

[img]
Preview
PDF
eResearch_430.pdf
Available under License Creative Commons Attribution.

Download (600kB)

Abstract

Background: Previous research on educational data has demonstrated that Rasch fit statistics (mean squares and t-statistics) are highly susceptible to sample size variation for dichotomously scored rating data, although little is known about this relationship for polytomous data. These statistics help inform researchers about how well items fit to a unidimensional latent trait, and are an important adjunct to modern psychometrics. Given the increasing use of Rasch models in health research the purpose of this study was therefore to explore the relationship between fit statistics and sample size for polytomous data. Methods: Data were collated from a heterogeneous sample of cancer patients (n = 4072) who had completed both the Patient Health Questionnaire – 9 and the Hospital Anxiety and Depression Scale. Ten samples were drawn with replacement for each of eight sample sizes (n = 25 to n = 3200). The Rating and Partial Credit Models were applied and the mean square and t-fit statistics (infit/outfit) derived for each model. Results: The results demonstrated that t-statistics were highly sensitive to sample size, whereas mean square statistics remained relatively stable for polytomous data. Conclusion: It was concluded that mean square statistics were relatively independent of sample size for polytomous data and that misfit to the model could be identified using published recommended ranges.

Item Type: Article
Date Deposited: 19 Mar 2009 10:41
Last Modified: 19 Mar 2014 12:55
URI: http://eresearch.qmu.ac.uk/id/eprint/430

Actions (login required)

View Item View Item