Visualising Speech: Identification of Atypical Tongue-Shape Patterns in the Speech of Children with Cleft Lip and Palate Using Ultrasound Technology

Susan Lloyd 1, Joanne Cleland1, Lisa Crampin2, Linsay Campbell2, Natalia Zharkova2, & Pertti Palo1
1University of Strathclyde, UK, 2NHS Greater Glasgow & Clyde 3 Queen Margaret University, UK joanne.cleland@strath.ac.uk @DrJoanneCleland @SusieSpechsie

Background
Gibbon (2004) identifies 8 distinct error types in the speech of people with cleft lip and palate (CLP) using electropalatography (EPG). EPG measures tongue-palate contact, but is expensive and logistically difficult. In contrast, ultrasound tongue imaging (UTI) is cheaper, and can image the posterior articulations (such as pharyngeals) not visible with EPG which are common in CLP.

Can the eight error types made visible with EPG in CLP speech also be identified with ultrasound?

Method
To date, data has been collected from 35 children aged 3 to 12 with CLP.

Data are spoken materials from the CLEFTNET protocol:
• /aCa/ x 10
• Minimal sets (e.g. a sip, a ship, a kip, a tip)
• Sentences from the GOS.SP.ASS. 981 (e.g. (Happy) Karen is making a cake)

Analysis using ultrasound-assisted transcription to identify Gibbon’s 8 error-types:
• Live by the clinician collecting the data
• Offline but in Real-time by two ultrasound trained clinicians
• Offline in slow motion by two ultrasound trained clinicians

Quantitative Ultrasound Analysis using indices from the literature.

Results: Errors Revealed by Ultrasound
Target sounds indicated in brackets. Mid-sagittal views show the tongue tip to the right. Abnormal timing and increased variability are also identifiable with UTI, but not shown here.

Results: Aided Transcription
From early analysis of data gathered so far:
• 60.3% of consonants were produced correctly
• 60.1% of consonants in error were imageable by ultrasound
• Non-imageable errors were non-lingual: e.g. nasalised, fricative loss of pressure, glottal reinforcement

Inter-rater reliability for offline real-time transcription was “good” using Cohen’s kappa (k=.716, p<.0005).

Discussion
• All of Gibbon’s errors have been identified in our data using ultrasound aided transcription
• Additionally, retroflex errors were identified using UTI
• Identification of some error types may change diagnosis and therefore intervention choice
• Ultrasound is cheaper and more convenient than EPG as it does not require individualised plates or advance planning: children were able to opt in to the project while at routine appointments

References