Show simple item record

dc.contributor.authorIbegbu, A. O.
dc.contributor.authorMullaney, I.
dc.contributor.authorFyfe, Lorna
dc.contributor.authorMcBean, Douglas
dc.date.accessioned2018-06-29T21:33:37Z
dc.date.available2018-06-29T21:33:37Z
dc.date.issued2011-04-30
dc.identifierER2726
dc.identifier.citationIbegbu, A., Mullaney, I., Fyfe, L. & McBean, D. (2011) The Roles of Opioid Receptors and Agonists in Health and Disease Conditions. British Journal of Pharmacology and Toxicology, 2(2), pp. 84-91.
dc.identifier.issn2044-2467
dc.identifier.urihttp://www.maxwellsci.com/jp/abstract.php?jid=BJPT&no=110&abs=04
dc.identifier.urihttps://eresearch.qmu.ac.uk/handle/20.500.12289/2726
dc.descriptionThe authors graciously acknowledge Queen Margaret University, Edinburgh for the award of the Martlet research Scholarship and the Ahmadu Bello University Zaria-Nigeria for awarding the first author study fellowship to undertake this research studies.
dc.description.abstractOpioid receptors are found in the Central Nervous System (CNS) and are classified as mu (µ), kappa (κ), delta (δ) and sigma (σ) opioid receptors. Opioid receptors belong to the large family of G Protein Coupled Receptors (GPCRs), and have diverse and important physiological roles. The aim of the present review is to discuss the roles played by opioid receptors, their agonists and antagonists in health and disease conditions. Opioid receptors are not uniformly distributed in the CNS and are found in areas concerned with pain, with the highest concentration in the cerebral cortex, followed by the amygdala, septum, thalamus, hypothalamus, midbrain and spinal cord. Activated delta opioid receptors are coupled to Gi1 while activated mu opioid receptors are coupled to Gi3 in neuroblastoma cells. Mu opioid receptors are activated by mu receptor agonists and are coupled through the Gi1 and GoA. Both mu and kappa opioid receptors are coupled via both Gi and Gz and opioid receptors are important targets for thousands of pharmacological agents. GPCRs typically require activation by agonists for their signalling activity to be initiated but some of the GPCRs may display basal or spontaneous signalling activity in the absence of an agonist. The stimulation of these receptors triggers analgesic effects and affects the function of the nervous system, gastrointestinal tract and other body systems. Hundreds of analogs of opioid peptides have been synthesized in an effort to make the compounds more active, selective, and resistant to biodegradation than the endogenous ligands. All these modifications resulted in obtaining very selective agonists and antagonists with high affinity at mu-, delta-, and kappa-opioid receptors, which are useful in further studies on the pharmacology of opioid receptors in a mammalian organism.
dc.format.extent84-91
dc.publisherMaxwell Scientific Organization,
dc.relation.ispartofBritish Journal of Pharmacology and Toxicology
dc.subjectOpioid Receptors
dc.subjectG-Protein Coupled Receptors
dc.subjectOpioid Agonists
dc.subjectOpioid Antagonists
dc.subjectMu Opioid
dc.subjectKappa Opioid
dc.subjectDelta Opioid
dc.titleThe Roles of Opioid Receptors and Agonists in Health and Disease Conditions
dc.typearticle
dcterms.accessRightspublic
dc.description.facultysch_die
dc.description.referencetextBailey, C.P. and M. Connor, 2005. Opioids: cellular mechanisms of tolerance and physical dependence. Curr. Opin. Pharmacol., 5(1): 60-68. Berridge, M.J., 2006. Cell Signalling Biology. Portland Press Ltd., Retrieved from: www. cellsignallingbiology.org. Bouaboula, M., C. Poinot Chazel, B. Bourrie, X. Canat, B. Calandra, M. Rinaldi-Carmona, G. Le Fur and P. Casellas, 1995. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem. J., 312: 637-641. Burford, N.T., D. Wang and W. Sade, 2000. G-protein coupling of mu-opioid receptors (OP3): Elevated basal signalling activity. Biochem. J., 348(3): 531-537. Carter, B.D. and F. Medzihradsky, 1993. Go mediates the coupling of the mu opioid receptor to adenylyl cyclase in cloned neural cells and brain. Proc. Natl. Acad. Sci. USA, 90(9): 4062-4066. Chakrabarti, S., P.L. Prather, L. Yu, P.Y. Law and H.H. Loh, 1995. Expression of the :-opioid receptor in CHO cells - ability of :-opioid ligands to promote a-azidoanilido [32P]GTP labelling of multiple Gprotein a subunits. J. Neurochem., 64: 2534-2543. Chaturvedi, K., K.H. Christoffers, K. Singh and R.D. Howells, 2000. Structure and regulation of opioid receptors. Biopolymers, 55(4): 334-346. Corbett, A.D., G. Henderson, A.T. McKnight and S.J. Paterson, 2006. 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br. J. Pharmacol., 147: S153-S162. Corchero, J., J.A. Fuentes and J. Manzanares, 1997. delta 9-Tetrahydrocannabinol increases proopiomelanocortin gene expression in the arcuate nucleus of the rat hypothalamus. Eur. J. Pharmacol., 323(2-3): 193-195. Devi, L.A., 2001. Heterodimerization of G-proteincoupled receptors: Pharmacology, signaling and trafficking. Trend. Pharmacol. Sci., 22: 532-537. Doyle, D., G. Hanks, I. Cherney and K. Calman, 2004. Oxford Textbook of Palliative Medicine. 3rd Edn., Oxford University Press, UK, pp: 367-727. Eap, C.B., T. Buclin and P. Baumann, 2002. Interindividual variability of the clinical pharmacokinetics of methadone: Implications for the treatment of opioid dependence. Clin Pharmacokinet., 41(14): 1153-1193. Eap, C.B., J.J. Deglon and P. Boumann, 1999. Pharmacokinetics and pharmacogenetics of methadone: Clinical relevance. Heroin addiction and related clinical problems. Official J. EUROPAD, 1(1): 19-34. Fattore, L., G. Cossu, M.S. Spano, S. Deiana, P. Fadda, M. Scherma and W. Fratta, 2004. Cannabinoids and reward: Interactions with the opioid system. Crit. Rev Neurobiol., 16(1-2): 147-158. Felder, C.C. and M. Glass, 1998. Cannabinoid receptors and their endogenous agonists. Ann. Rev. Pharmacol. Toxicol., 38: 179-200. Fichna, J., K. Gach, M. Piestrzeniewicz, E. Burgeon, J. Poels, J.V. Broeck and A. Janecka, 2006. Functional characterization of opioid receptor ligands by aequorin luminescence-based calcium assay. J. Pharmacol. Exp. Ther., 317(3): 1150-1154. Freye, E. and J. Levy, 2005. Constitutive opioid receptor activation: A prerequisite mechanism involved in acute opioid withdrawal. Addict Biol., 10(2): 131-137. Fukuda, K., S. Kato, H. Morikawa, T. Shoda and K. Mori, 1996. Functional coupling of the *-, _-, and 6-opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J. Neurochem., 67: 1309-1316. Ghozland, S., H.W. Matthes, F. Simonin, D. Filliol, B.L. Kieffer and R. Maldonado, 2002. Motivational effects of cannabinoids are mediated by _-opioid and 6-opioid receptors. J Neurosci., 22(3): 1146-1154. Hasbi, A., S. Allouche, F. Sichel, L. Stanasila, D. Massotte, G. Landemore, J. Polastron and P. Jauzac, 2000. Internalization and recycling of delta-opioid receptor are dependent on a phosphorylation-dephosphorylation mechanism. J. Pharmacol. Exp. Ther., 293(1): 237-247. Kieffer, B.L., 1995. Recent advances in molecular recognition and signal transduction of active peptides: Receptors for opioid peptides. Cell Mol. Neurobiol., 15(6): 615-635. Koch, T. and V. Hollt, 2008. Role of receptor internalization in opioid tolerance and dependence. Pharmacol. Ther., 117(2): 199-206. Br. J. Pharmacol. Toxicol., 2(2): 84-91, 2011 90 Laugwitz, K.L., S. Offermanns, K. Spicher and G. Schultz, 1993. _ and * opioid receptors differentially couple to G protein subtypes in membranes of human neuroblastoma SH-SY5Y cells. Neuron, 10(2): 233-142. Ledent, C., O. Valverde, G. Cossu, F. Petitet, J.F. Aubert, F. Beslot, G.A. Bohme, A. Imperato, T. Pedrazzini, B.P. Roques, G. Vassart, W. Fratta and M. Parmentier, 1999. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science, 283: 401-404. Manzanares, J., J. Corchero, J. Romero, J.J. Fernndez- Ruiz, J.A. Ramos and J.A. Fuentes, 1999. Pharmacological and biochemical interactions between opioids and cannabinoids. Trend. Pharmacol. Sci., 20(7): 287-294. Manzanares, J., S. Ortiz, J.M. Oliva, S. Prez-Rial and T. Palomo, 2005. Interactions between cannabinoid and opioid receptor systems in the mediation of ethanol effects. Alcohol, 40(1): 25-34. Martin, M., C. Ledent, M. Parmentier, R. Maldonado and O. Valverde, 2000. Cocaine, but not morphine, induces conditioned place preference, sensitization to locomotor responses in CB1 knockout mice. Eur. J. Neurosci., 12: 4038-4046. Massotte, D. and B.L. Kieffer, 1998. A molecular basis for opiate action. Essays Biochem., 33: 65-77. Milligan, G., 2004. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol., 66: 1-7. Milligan, G. and E. Kostenis, 2006. Heterotrimeric Gproteins: a short history. Br. J. Pharmacol., 147(Suppl 1): S46-S55. Navarro, M., J. Chowen, A. Rocio, M. Carrera, I. del Arco, M.A. Villanua, Y. Martin, A.J. Roberts, G.F. Koob and F.R. de Fonseca, 1998. CB1 cannabinoid receptor antagonist-induced opiate withdrawal in morphine-dependent rats. Neuro Report, 9: 3397-3402. Piestrzeniewicz, M.K., J. Michna and A. Janecka, 2006. Opioid receptors and their selective ligands. Postepy Biochem., 52(3): 313-319. Piiper, A. and S. Zeuzem, 2004. Receptor tyrosine kinases are signalling intermediates of G proteincoupled receptors. Curr. Pharm. Des., 10(28): 3539- 3545. Raynor, K., H. Kong, J. Hines, G. Kong, J. Benovic, K. Yasuda, G.I. Bell and T. Reisine, 1994. Molecular mechanisms of agonist-induced desensitization of the cloned mouse kappa opioid receptor. J. Pharmacol. Exp. Ther., 270(3): 1381-1386. Raynor, K., H. Kong, S. Law, J. Heerding, M. Tallent, F. Livingston, J. Hines and T. Reisine 1996. Molecular biology of opioid receptors. NIDA Res. Monogr., 61: 83-103. Reche, I., J.A. Fuentes and M. Ruiz-Gayo, 1996. Potentiation of 9-tetrahydro cannabinol-induced analgesia by morphine in mice: involvement of _- and 6-opioid receptors. Eur. J. Pharmacol., 318: 11-16. Reisine, T. and G.I. Bell, 1993. Molecular biology of opioid receptors. Trend. Neurosci., 16(12): 506-510. Reisine, T. and M.J. Brownstein, 1994. Opioid and cannabinoid receptors. Curr. Opin. Neurobiol., 4(3): 406-412. Rhim, H. and R.J. Miller, 1994. Opioid receptors modulate diverse types of calcium channels in the nucleus tractus solitarius of the rat. J. Neurosci., 14(12): 7608-7615. Rodr_guez de Fonseca, F., P. Rubio, F. Menzaghi, E. Merlo-Pich, J. Rivier, G.F. Koob, and M. Navarro, 1996. Corticotropin-Releasing Factor (CRF) antagonist [D-Phe12, Nle21,38,C alpha MeLeu37]CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU-210 on defensive-withdrawal behaviour in rats. J. Pharmacol. Exp. Ther., 276(1): 56-64. Saidak, Z., K. Blake-Palmer, D.L. Hay, J.K. Northup and M. Glass, 2006. Differential activation of G-proteins by mu-opioid receptor agonists. Br. J. Pharmacol., 147(6): 671-680. Smart, R.G. and A.C. Ogborne, 2000. Drug use and drinking among students in 36 countries. Addict. Behav., 25: 455-460. Samways, D.S. and G. Henderson, 2006. Opioid elevation of intracellular free calcium:possible mechanisms and physiological relevance. Cell Signal, 18(2): 151-161. Smith, F.L., D. Cichewicz, Z.L. Martin and S.P. Welch, 1998. The enhancement of morphine antinociception in mice by delta9-tetrahydrocannabinol. Pharmacol. Biochem. Behav., 60(2): 559-566. Smith, P.B., S.P. Welch and B.R. Martin, 1994. Interactions between 9-tetrahydro cannabinol and 6- opioids in mice. J. Pharmacol. Exp. Ther., 268: 1381-1387. Tanda, G., F.E. Pontieri and G. Di Chiara, 1997. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science, 276(5321): 2048-2050. Thorat, S.N. and H.N. Bhargava, 1994. Evidence for a bidirectional cross-tolerance between morphine and 9- tetrahydrocannabinol in mice. Eur. J. Pharmacol., 260: 5-13. Tso, P.H. and Y.H. Wong, 2000. G(z) can mediate the acute actions of mu- and kappa -opioids but is not involved in opioid-induced adenylyl cyclase supersensitization. J. Pharmacol. Exp. Ther., 295(1): 168-176. Br. J. Pharmacol. Toxicol., 2(2): 84-91, 2011 91 Valverde, O., R. Maldonado, E. Valjent, A.M. Zimmer and A. Zimmer, 2000. Cannabinoid withdrawal syndrome is reduced in pre-proenkephalin knock-out mice. J. Neurosci., 20: 9284-9289. Valverde, O., F. Noble, F. Beslot, V. Dauge, M.C. Fournie-Zaluski and B.P. Roques, 2001. 9- tetrahydrocannabinol releases, facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur. J. Neurosci., 13: 1816-1824. Vela, G., M. Ruiz-Gayo and J.A. Fuentes, 1995. Anandamide decreases naloxone-precipitated withdrawal signs in mice chronically treated with morphine. Neuro Pharmacol., 34: 665-668. Vigan_, D., T. Rubino and D. Parolaro, 2005. Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacol. Biochem. Behav., 81(2): 360-368. Wang, J., Q. Gao, J. Shen, T.M. Ye and Q. Xia, 2007. Kappa-opioid receptor mediates the cardioprotective effect of ischemic postconditioning. Zhejiang Da Xue Xue Bao Yi Xue Ban, 36(1): 41-47. Williams, J.T., M.J. Christie and O. Manzoni, 2001. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev., 81: 299-343. Xiong, L.Z., J. Yang, Q. Wang and Z.H. Lu, 2007. Involvement of delta-and mu-opioid receptors in the delayed cerebral ischemic tolerance induced by repeated electroacupuncture preconditioning in rats. Chin. Med. J. (Engl), 120(5): 394-399
dc.description.volume2
dc.description.ispublishedpub
dc.description.eprintid2726
rioxxterms.typearticle
qmu.authorMcBean, Douglas
qmu.authorFyfe, Lorna
dc.description.statuspub
dc.description.number2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record