Show simple item record

dc.contributor.authorHislop, Jane
dc.contributor.authorBulley, Catherine
dc.contributor.authorMercer, Tom
dc.contributor.authorReilly, J. J.
dc.date.accessioned2018-06-29T21:45:58Z
dc.date.available2018-06-29T21:45:58Z
dc.date.issued2012-08
dc.identifierER2812
dc.identifier.citationHislop, J., Bulley, C., Mercer, T. & Reilly, J. (2012) Comparison of epoch and uniaxial versus triaxial accelerometers in the measurement of physical activity in preschool children: a validation study, Pediatric Exercise Science, vol. 24, , pp. 450-460,
dc.identifier.issn0899-8493
dc.identifier.urihttps://eresearch.qmu.ac.uk/handle/20.500.12289/2812
dc.description.abstractThe objectives of this study were to explore whether triaxial is more accurate than uniaxial accelerometry and whether shorter sampling periods (epochs) are more accurate than longer epochs. Physical activity data from uniaxial and triaxial (RT3) devices were collected in 1-s epochs from 31 preschool children (15 males, 16 females, 4.4 0.8 yrs) who were videoed while they engaged in 1-hr of free-play. Video data were coded using the Children's Activity Rating Scale (CARS). A significant difference (p < .001) in the number of minutes classified as moderate to vigorous physical activity (MVPA) was found between the RT3 and the CARS (p < .002) using the cut point of relaxed walk. No significant difference was found between the GT1M and the CARS or between the RT3 and the CARS using the cut point for light jog. Shorter epochs resulted in significantly greater overestimation of MVPA, with the bias increasing from 0.7 mins at 15-s to 3.2 mins at 60-s epochs for the GT1M and 0 mins to 1.7 mins for the RT3. Results suggest that there was no advantage of a triaxial accelerometer over a uniaxial model. Shorter epochs result in significantly higher number of minutes of MVPA with smaller bias relative to direct observation.
dc.format.extent450-460
dc.publisherHuman Kinetics
dc.relation.ispartofPediatric Exercise Science
dc.titleComparison of epoch and uniaxial versus triaxial accelerometers in the measurement of physical activity in preschool children: a validation study
dc.typearticle
dcterms.accessRightspublic
dc.description.facultysch_phy
dc.description.referencetext1. Australian Government Department of Health and Ageing. Australian Physical Activity Recommendations for Children aged 0-5 years. Australia: Australian Government Department of Health and Ageing; 2009. 2. Bland, J.M., and D.G. Altman. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet. 8476:307-310, 1986. PubMed doi:10.1016/S0140-6736(86)90837-8 3. Bornstein, D.B., M.W. Beets, W. Byun, and K. McIver. Accelerometer-derived physical activity levels of preschoolers: A meta-analysis. J. Sci. Med. Sport. 14:504-511, 2011. PubMed doi:10.1016/j.jsams.2011.05.007 4. Chu, E.Y., A.M. McManus, and C.C. Yu. Calibration of the RT3 accelerometer for ambulation and nonambulation in children. Med. Sci. Sports Exerc. 39:2085-2091, 2007. PubMed doi:10.1249/mss.0b013e318148436c 5. Cliff, D.P., J.J. Reilly, and A.D. Okely. Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0-5 years. J. Sci. Med. Sport. 12:557-567, 2009. PubMed doi:10.1016/j.jsams.2008.10.008 6. Corder, K., S. Brage, A. Ramachandran, C. Snehalatha, N. Wareham, and U. Ekelund. Comparison of two Actigraph models for assessing free-living physical activity in Indian adolescents. J Sports Sci. 25:1607-1611, 2007. PubMed doi:10.1080/02640410701283841 7. Dorsey, K., J. Herrin, H. Krumholz, and M. Irwin. The Utility of Shorter Epochs in Direct Motion Monitoring. Res. Q. Exerc. Sport. 80:460-468, 2009. PubMed doi:10. 5641/027013609X13088500159200 8. Edwardson, C.L., and T. Gorely. Epoch Length and Its Effect on Physical Activity Intensity. Med. Sci. Sports Exerc. 42:928-934, 2010. PubMed doi:10.1249/ MSS.0b013e3181c301f5 9. Evenson, K.R., D.J. Catellier, K. Gill, K.S. Ondrak, and R.G. McMurray. Calibration of two objective measures of physical activity for children. J Sports Sci. 26:1557-1565, 2008. PubMed 10. Freedson, P., D. Pober, and K.F. Janz. Calibration of accelerometer output for children. Med. Sci. Sports Exerc. 37:S523-S530, 2005. PubMed doi:10.1249/01. mss.0000185658.28284.ba 11. Guinhouya, C.B., H. Hubert, S. Soubrier, C. Vilhelm, M. Lemdani, and A. Durocher. Moderate-to-vigorous physical activity among children: discrepancies in accelerometrybased cut-off points. Obesity (Silver Spring). 14:774-777, 2006. PubMed doi:10.1038/ oby.2006.89 12. John, D., B. Tyo, and D.R. Bassett. Comparison of Four ActiGraph Accelerometers during Walking and Running. Med. Sci. Sports Exerc. 42:368-374, 2010. PubMed 13. Kelly, L.A., J.J. Reilly, S.C. Fairweather, S. Barrie, S. Grant, and J.Y. Paton. Comparison of two accelerometers for assessment of physical activity in preschool children. Pediatr. Exerc. Sci. 16:324-333, 2004. 14. Kozey, S.L., J.W. Staudenmayer, R.P. Troiano, and P.S. Freedson. Comparision of the ActiGraph 7164 and the Actigraph GT1M during self-paced Locomotion. Med. Sci. Sports Exerc. 42:971-976, 2010. PubMed doi:10.1249/MSS.0b013e3181c29e90 15. Nilsson, A., U. Ekelund, A. Yngve, and M. Sjstrm. Assessing Physical Activity Among Children With Accelerometers Using Different Time Sampling Intervals and Placements. Pediatr. Exerc. Sci. 14:87-96, 2002. 16. Oliver, M., G.M. Schofield, and G.S. Kolt. Physical Activity in Preschoolers. Understanding Prevalence and Measurement Issues. Sports Med. 37:1045-1070, 2007. PubMed doi:10.2165/00007256-200737120-00004 17. Ott, A.E., R.R. Pate, S.G. Trost, D.S. Ward, and R. Saunders. The use of uniaxial and triaxial accelerometers to measure children's free-play- physical activity. Pediatr. Exerc. Sci. 12:360-370, 2000. 18. Pate, R.R., M.J. Almeida, K.L. McIver, K.A. Pfeiffer, and M. Dowda. Validation and Calibration of an Accelerometer in Preschool Children. Obesity (Silver Spring). 14:2000-2006, 2006. PubMed doi:10.1038/oby.2006.234 19. Puhl, J., K. Greaves, M. Hoyt, and T. Baranowski. Children's Activity Rating Scale (CARS): description and calibration. Res. Q. Exerc. Sport. 61:26-36, 1990. PubMed 20. Puyau, M.R., A.L. Adolph, F.A. Vohra, and N.F. Butte. Validation and calibration of physical activity monitors in children. Obes. Res. 10:150-157, 2002. PubMed doi:10.1038/oby.2002.24 21. Reilly, J.J. Low Levels of Objectively Measured Physical Activity in Preschoolers in Child Care. Med. Sci. Sports Exerc. 42:502-507, 2010. PubMed 22. Reilly, J.J., V. Penpraze, J. Hislop, G. Davies, S. Grant, and J.Y. Paton. Objective measurement of physical activity and sedentary behaviour: review with new data. Arch. Dis. Child. 93:614-619, 2008. PubMed doi:10.1136/adc.2007.133272 23. Ridley, K., and T.S. Olds. Assigning energy costs to activities in children: a review and synthesis. Med. Sci. Sports Exerc. 40:1439-1446, 2008. PubMed doi:10.1249/ MSS.0b013e31817279ef 24. Rowlands, A.V., P.W. Thomas, R.G. Eston, and R. Topping. Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Med. Sci. Sports Exerc. 36:518-524, 2004. PubMed doi:10.1249/01.MSS.0000117158.14542.E7 25. Sirard, J.R., S.G. Trost, K.A. Pfeiffer, M. Dowda, and R.R. Pate. Calibration and Evaluation of an Objective Measure of Physical Activity in Preschool Children. J Phys Act Health. 3:345-357, 2005. 26. Sun, D.X., G. Schmidt, and S.M. Teo-Koh. Validation of the RT3 Accelerometer for Measuring Physical Activity of Children in Simulated Free-Living Conditions. Pediatr. Exerc. Sci. 20:181-197, 2008. PubMed 27. Trost, S.G., K.L. McIver, and R.R. Pate. Conducting accelerometer-based activity assessments in field-based research. Med. Sci. Sports Exerc. 37:S531-S543, 2005. PubMed doi:10.1249/01.mss.0000185657.86065.98 28. Vale, S., R. Santos, P. Silva, L. Soares-Miranda, and J. Mota. Preschool Children Physical Activity Measurement: Importance of Epoch Length Choice. Pediatr. Exerc. Sci. 21:413-420, 2009. PubMed 29. van Cauwenberghe, E., V. Labarque, S.G. Trost, I. De Bourdeaudhuij, and G. Cardon. Calibration and comparison of accelerometer cut points in preschool children. In J Pediatr Obes. 6:e582-e589,2010. 30. Vanhelst J, Beghin L, Turck D, Gottrand F. New validated thresholds for various intensities of physical activity in adolescents using the Actigraph accelerometer. Int J Rehabil Res, 00:000-000, 2010. 31. Welk, G.J., S.N. Blair, K. Wood, S. Jones, and R.W. Thompson. A comparative evaluation of three accelerometry-based physical activity monitors. Med. Sci. Sports Exerc. 32:S489-S497, 2000. PubMed doi:10.1097/00005768-200009001-00008
dc.description.volume24
dc.description.ispublishedpub
dc.description.eprintid2812
rioxxterms.typearticle
qmu.authorMercer, Tom
qmu.authorHislop, Jane
qmu.authorBulley, Catherine
dc.description.statuspub
dc.description.number3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record