Show simple item record

dc.contributor.authorSmith, Adam B.
dc.contributor.authorRush, Robert
dc.contributor.authorFallowfield, Lesley J.
dc.contributor.authorVelikova, Galina
dc.contributor.authorSharpe, M.
dc.date.accessioned2018-07-20T08:47:05Z
dc.date.available2018-07-20T08:47:05Z
dc.date.issued2008-05-29
dc.identifier.citationSmith, A., Rush, R., Fallowfield, L., Velikova, G. & Sharpe, M. (2008) Rasch fit statistics and sample size considerations for polytomous data, BMC Medical Research Methodology, vol. 8, , pp. 33,
dc.identifier.issn14712288
dc.identifier.urihttps://eresearch.qmu.ac.uk/handle/20.500.12289/430
dc.identifier.urihttp://dx.doi.org/10.1186/1471-2288-8-33
dc.description.abstractBackground: Previous research on educational data has demonstrated that Rasch fit statistics (mean squares and t-statistics) are highly susceptible to sample size variation for dichotomously scored rating data, although little is known about this relationship for polytomous data. These statistics help inform researchers about how well items fit to a unidimensional latent trait, and are an important adjunct to modern psychometrics. Given the increasing use of Rasch models in health research the purpose of this study was therefore to explore the relationship between fit statistics and sample size for polytomous data. Methods: Data were collated from a heterogeneous sample of cancer patients (n = 4072) who had completed both the Patient Health Questionnaire – 9 and the Hospital Anxiety and Depression Scale. Ten samples were drawn with replacement for each of eight sample sizes (n = 25 to n = 3200). The Rating and Partial Credit Models were applied and the mean square and t-fit statistics (infit/outfit) derived for each model. Results: The results demonstrated that t-statistics were highly sensitive to sample size, whereas mean square statistics remained relatively stable for polytomous data. Conclusion: It was concluded that mean square statistics were relatively independent of sample size for polytomous data and that misfit to the model could be identified using published recommended ranges.
dc.format.extent33
dc.relation.ispartofBMC Medical Research Methodology
dc.titleRasch fit statistics and sample size considerations for polytomous data
dc.typearticle
dcterms.accessRightspublic
dc.description.facultyNO DIVISION
dc.description.volume8
dc.identifier.doidoi:10.1186/1471-2288-8-33
dc.description.ispublishedpub
dc.description.eprintid430
rioxxterms.typearticle
qmu.authorRush, Robert
dc.description.statuspub
dc.description.number1


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record