Browsing by Person "Beckwith, Peter G."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Commentary: Time to change the way we think about tuberculosis infection prevention and control in health facilities: insights from recent research(Cambridge University Press, 2023-07-17) Yates, Tom A.; Karat, Aaron S.; Bozzani, Fiammetta; McCreesh, Nicky; MacGregor, Hayley; Beckwith, Peter G.; Govender, Indira; Colvin, Christopher J.; Kielmann, Karina; Grant, Alison D.In clinical settings where airborne pathogens, such as Mycobacterium tuberculosis, are prevalent, they constitute an important threat to health workers and people accessing healthcare. We report key insights from a 3-year project conducted in primary healthcare clinics in South Africa, alongside other recent tuberculosis infection prevention and control (TB-IPC) research. We discuss the fragmentation of TB-IPC policies and budgets; the characteristics of individuals attending clinics with prevalent pulmonary tuberculosis; clinic congestion and patient flow; clinic design and natural ventilation; and the facility-level determinants of the implementation (or not) of TB-IPC interventions. We present modeling studies that describe the contribution of M. tuberculosis transmission in clinics to the community tuberculosis burden and economic evaluations showing that TB-IPC interventions are highly cost-effective. We argue for a set of changes to TB-IPC, including better coordination of policymaking, clinic decongestion, changes to clinic design and building regulations, and budgeting for enablers to sustain implementation of TB-IPC interventions. Additional research is needed to find the most effective means of improving the implementation of TB-IPC interventions; to develop approaches to screening for prevalent pulmonary tuberculosis that do not rely on symptoms; and to identify groups of patients that can be seen in clinic less frequently.Item Direct estimates of absolute ventilation and estimated Mycobacterium tuberculosis transmission risk in clinics in South Africa(Public Library of Science, 2022-11-02) Beckwith, Peter G.; Karat, Aaron S.; Govender, Indira; Deol, Arminder K.; McCreesh, Nicky; Kielmann, Karina; Baisley, Kathy; Grant, Alison D.; Yates, Tom A.Healthcare facilities are important sites for the transmission of pathogens spread via bioaerosols, such as Mycobacterium tuberculosis. Natural ventilation can play an important role in reducing this transmission. We aimed to measure rates of natural ventilation in clinics in KwaZulu-Natal and Western Cape provinces, South Africa, then use these measurements to estimate Mycobacterium tuberculosis transmission risk. We measured ventilation in clinic spaces using a tracer-gas release method. In spaces where this was not possible, we estimated ventilation using data on indoor and outdoor carbon dioxide levels. Ventilation was measured i) under usual conditions and ii) with all windows and doors fully open. Under various assumptions about infectiousness and duration of exposure, measured absolute ventilation rates were related to risk of Mycobacterium tuberculosis transmission using the Wells-Riley Equation. In 2019, we obtained ventilation measurements in 33 clinical spaces in 10 clinics: 13 consultation rooms, 16 waiting areas and 4 other clinical spaces. Under usual conditions, the absolute ventilation rate was much higher in waiting rooms (median 1769 m3/hr, range 338–4815 m3/hr) than in consultation rooms (median 197 m3/hr, range 0–1451 m3/hr). When compared with usual conditions, fully opening existing doors and windows resulted in a median two-fold increase in ventilation. Using standard assumptions about infectiousness, we estimated that a health worker would have a 24.8% annual risk of becoming infected with Mycobacterium tuberculosis, and that a patient would have an 0.1% risk of becoming infected per visit. Opening existing doors and windows and rearranging patient pathways to preferentially use better ventilated clinic spaces result in important reductions in Mycobacterium tuberculosis transmission risk. However, unless combined with other tuberculosis infection prevention and control interventions, these changes are insufficient to reduce risk to health workers, and other highly exposed individuals, to acceptable levels.