Browsing by Person "Coyle, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Anti-microbial activity and composition of Manuka and Portobello honey(John Wiley & Sons, Ltd, 2013-08) Schneider, M.; Coyle, S.; Warnock, Mary; Gow, Iain F.; Fyfe, LornaRecently renewed interest in the therapeutic properties of honey has led to the search for new antimicrobial honeys. This study was undertaken to assess the antimicrobial activity and composition of a locally produced Portobello honey (PBH) on three bacteria known to infect wounds. Manuka honey (MH) was used for comparative purposes. Broth culture and agar disc diffusion assays were used to investigate the antimicrobial properties of honey. The honeys were tested at four concentrations: 75%, 50%, 10% and 1% (v/v) and compared with an untreated control. The composition of honey was determined by measuring: polyphenol content by Folin Ciocalteau method, antioxidant capacity by ferric ion reducing power assay, hydrogen peroxide (H2O2) by catalase test, pH and sugar content by pH strips and refractometer, respectively. Both honeys at 75% and 50% inhibited the majority of the three bacteria tested. 10% PBH exhibited antimicrobial activity to the lesser extent than 10% MH. The difference was very significant (p ≤ 0.001). Both honeys were acidic with pH 4, and both produced H2O2. The sugar content of PBH was higher than MH, but the difference was not significant. The MH had significantly higher levels of the polyphenols and antioxidant activity than PBH. Copyright © 2012 John Wiley & Sons, Ltd.Item Influence of Subinhibitory Concentrations of Honey on Toxic Shock Syndrome Toxin -1 (TSST-1) Production by Two Strains of Staphylococcus Aureus(Horizon Research Publishing, 2015-05) Okoro, P.; Coyle, S.; Fyfe, LornaAntibiotic resistant bacteria are a worldwide health concern and it is essential to develop new antimicrobial agents to kill these bacteria and to reduce the use of antibiotics. Staphyloccus aureus (S.aureus) an important medical pathogen is responsible for many wound infections and up to 25% of all strains produce the toxic shock syndrome toxin (TSST-1) which stimulates the release of inflammatory cytokines which cause fever and shock. Here we report on the inhibition of two penicillin resistant TSST-1 producing strains of S.aureus by seven different honeys. Bacterial growth was reduced after 24 hours at 37oC, from 10.0 log 10 in the TSB growth control to less than 1.0 log 10 in Highland, Chilean and Manuka honey. TSST-1 production was reduced from 256ng/ml in the TSB growth control to less than 30 ng/ml in sub inhibitory concentrations of all honeys.