Browsing by Person "Gault, V. A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Daily administration of the GIP-R antagonist (Pro3)GIP in streptozotocin-induced diabetes suggests that insulin-dependent mechanisms are critical to anti-obesity-diabetes actions of (Pro3)GIP(Wiley, 2008-04) McClean, P. L.; Gault, V. A.; Irwin, N.; McCluskey, Jane T.; Flatt, P. R.AIM: Glucose-dependent insulinotropic polypeptide-receptor (GIP-R) antagonism using (Pro3)GIP improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure and function in a commonly used model of obesity-diabetes, namely ob/ob mice. The effect of GIP-R antagonism in a streptozotocin (STZ)-induced model of insulin deficiency has not been evaluated. The present study has investigated the effects of daily administration of (Pro(3))GIP to STZ-treated mice. METHODS: Swiss TO mice received once-daily injection of (Pro3)GIP (25 nmol/kg body weight) or saline 4 days prior to and 16 days after injection of STZ, and effects on metabolic parameters and islet architecture were assessed. RESULTS: (Pro3)GIP treatment had no significant effect on hyperphagia or body weight loss. However, hyperglycaemia and glycated haemoglobin were worsened, glucose tolerance further decreased and insulin sensitivity was impaired by (Pro3)GIP. These effects were observed on an STZ-induced background characterized by severe reductions of circulating insulin, beta-cell mass and pancreatic insulin stores. CONCLUSIONS: These data indicate that the beneficial actions of the GIP-R antagonist, (Pro3)GIP, in obesity-diabetes appear to be largely mediated through insulin-dependent mechanisms that merit further investigation.Item N-acetyl-GLP-1: a DPP IV-resistant analogue of glucagon-like peptide-1 (GLP-1) with improved effects on pancreatic _-cell-associated gene expression(Wiley, 2004) Liu, H. K.; Green, B. D.; Gault, V. A.; McCluskey, Jane T.; McLenaghan, N. H.; O'Harte, F. P. M.; Flatt, P. R.Glucagon-like peptide-1(7-36)amide (GLP-1) is a key insulinotropic hormone with the reported potential to differentiate non-insulin secreting cells into insulin-secreting cells. The short biological half-life of GLP-1 after cleavage by dipeptidylpeptidase IV (DPP IV) to GLP-1(9-36)amide is a major therapeutic drawback. Several GLP-1 analogues have been developed with improved stability and insulinotropic action. In this study, the N-terminally modified GLP-1 analogue, N-acetyl-GLP-1, was shown to be completely resistant to DPP IV, unlike native GLP-1, which was rapidly degraded. Furthermore, culture of pancreatic ductal ARIP cells for 72 h with N-acetyl-GLP-1 indicated a greater ability to induce pancreatic beta-cell-associated gene expression, including insulin and glucokinase. Further investigation of the effects of stable GLP-1 analogues on beta-cell differentiation is required to assess their potential in diabetic therapy.