Browsing by Person "Hamid, M."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Comparative functional study of clonal insulin-secreting cells cultured in five commercially available tissue culture media.(Cognizant, 2001) Hamid, M.; McCluskey, Jane T.; McClenaghan, N. H.; Flatt, P. R.The electrofusion-derived rat insulin-secreting cell line BRIN-BD11 was cultured in five different commercially available media to determine the optimum medium for the in vitro maintenance of such clonal cell lines. Cells were cultured in RPMI-1640, DMEM, McCOY'S, F-12K, or MEM culture medium supplemented with 10% (v/v) fetal bovine serum and antibiotics (100 U/ml penicillin and 0.1 g/L streptomycin). Insulin secretion studies performed after 10 days revealed RPMI-1640 to be the best performing medium in terms of insulin secretory responsiveness to a range of stimuli including glucose, L-alanine, L-arginine, carbachol, and glibenclamide. Insulin release was significantly decreased (p < 0.01 to p < 0.05) in all other media compared to RPMI-1640. Only the cells cultured in RPMI-1640 and DMEM showed a significant glucose-induced insulin secretory response (p < 0.01 and p < 0.05). McCOY'S gave the next best result followed by F-12K and MEM. After the 10-day culture period, the highest insulin content was found in cells cultured in RPMI-1640 and DMEM with significantly lower levels of insulin in cells cultured in McCOY'S, F-12K, and MEM (p < 0.01 to p < 0.001). RPMI-1640 was used for further studies to investigate the effects of 5.6-16.7 mmol/L glucose in culture on the secretory responsiveness of BRIN-BD11 cells. Significant responses to a number of nonglucidic secretagogues were seen following culture at 5.6 and 16.7 mmol/L glucose, although responsiveness was less than after culture with 11.1 mmol/L glucose. At 16.7 mmol/L glucose culture, glucose-stimulated insulin release was abolished.Item Comparison of the secretory properties of four insulin-secreting cell lines.(Taylor & Francis, 2002) Hamid, M.; McCluskey, Jane T.; McClenaghan, N. H.; Flatt, P. R.The insulin-secretory responsiveness of four popular and widely used insulin-secreting cells lines (RINm5F, HIT-T15, INS-1 and BRIN-BD11 cells) to a range of stimuli including glucose, amino acids, neurotransmitters, peptide hormones and sulphonylureas was studied. Differences were seen in the pattern of responsiveness of the cell lines to the various modulators of insulin release. While these studies revealed that INS-1 cells had the highest insulin content, only BRIN-BD11 cells exhibited a significant step-wise insulin secretory response to increasing glucose concentrations. BRIN-BD11 cells also showed pronounced insulin responses to leucine, KIC, L-arginine, L-alanine and palmitic acid. All the cell lines tested gave significant responses to the neurotransmitters carbachol and glibenclamide with increased insulin release. A comparison was made between the functional characteristics of the various cell lines with those of freshly isolated rat islets. This illustrated the general value of each cell line as a model for studies of insulin secretion. Electrofusion-derived BRIN-BD11 cells appeared to closely mimic the glucose sensitivity and overall secretory performance of normal rat islets.Item Configuration of electrofusion-derived human insulin-secreting cell line as pseudoislets enhances functionality and therapeutic utility(2012-09-01) Guo-Parke, H.; McCluskey, Jane T.; Kelly, C.; Hamid, M.; McClenaghan, N. H.; Flatt, P. R.Formation of pseudoislets from rodent cell lines has provided a particularly useful model to study homotypic islet cell interactions and insulin secretion. This study aimed to extend this research to generate and characterize, for the first time, functional human pseudoislets comprising the recently described electrofusion-derived insulin-secreting 1.1B4 human _-cell line. Structural pseudoislets formed readily over 3-7 days in culture using ultra-low-attachment plastic, attaining a static size of 100-200 _m in diameter, corresponding to ~6000 _ cells. This was achieved by decreases in cell proliferation and integrity as assessed by BrdU ELISA, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, and lactate dehydrogenase assays. Insulin content was comparable between monolayers and pseudoislets. However, pseudoislet formation enhanced insulin secretion by 17- to 125-fold in response to acute stimulation with glucose, amino acids, incretin hormones, or drugs compared with equivalent cell monolayers. Western blot and RT-PCR showed expression of key genes involved in cell communication and the stimulus-secretion pathway. Expression of E-Cadherin and connexin 36 and 43 was greatly enhanced in pseudoislets with no appreciable connexin 43 protein expression in monolayers. Comparable levels of insulin, glucokinase, and GLUT1 were found in both cell populations. The improved secretory function of human 1.1B4 cell pseudoislets over monolayers results from improved cellular interactions mediated through gap junction communication. Pseudoislets comprising engineered electrofusion-derived human _ cells provide an attractive model for islet research and drug testing as well as offering novel therapeutic application through transplantation.Item Culture and function of electrofusion-derived clonal insulin-secreting cells immobilized on solid and macroporous microcarrier beads.(Portland Press, 2000-06) Hamid, M.; McCluskey, Jane T.; McClenaghan, N. H.; Flatt, P. R.In view of the advantages of the bulk production of clonal pancreatic beta cells, an investigation was made of the growth and insulin secretory functions of an electrofusion-derived cell line (BRIN-BD11) immobilized on a solid microcarrier, cytodex-1 or a macroporous microcarrier, cultispher-G. For comparison, similar tests were performed using BRIN-BD11 cells present in single cell suspensions or allowed to form pseudoislets. Similar growth profiles were recorded for each microcarrier with densities of 4.4 x 10(5) +/- 0.3 cells/ml and 4.2 x 10(5) +/- 0.2 cells/ml achieved using cytodex-1 and cultispher-G, respectively. Cell viability began to decline on day 5 of culture. Insulin concentration in the culture medium reached a peak of 26 +/- 2.0 ng/ml and 24 +/- 2.2 ng/ml for cells grown on cytodex-1 and cultispher-G, respectively. Cells grown on both types of microcarrier showed a significant 1.5-1.8-fold acute insulin-secretory response to 16.7 mmol/l glucose. L-alanine (10 mmol/l) and L-arginine (10 mmol/l) also induced significant 3 4 fold increases of insulin release. BRIN-BD11 cells immobilized on cytodex-1 or cultispher-G out-performed single cell suspensions and pseudoislets in terms of insulin-secretory responses to glucose and amino acids. A 1.3-fold, 2.2-fold and 1.7-fold stimulation of insulin secretion was observed for glucose, L-alanine and L-arginine respectively in single cell suspensions. Corresponding increases for pseudoislets were 1.6-1.8-fold for L-alanine and L-arginine, with no significant response to glucose alone. These data indicate the utility of micro-carriers for the production of functioning clonal beta cells.Item Development and Functional Characterization of Insulin-releasing Human Pancreatic Beta Cell Lines Produced by Electrofusion(2011) McCluskey, Jane T.; Hamid, M.; Guo-Parke, H.; McClenaghan, N. H.; Gomis, R.; Flatt, P. R.Three novel human insulin-releasing cell lines designated 1.1B4, 1.4E7, and 1.1E7 were generated by electrofusion of freshly isolated of human pancreatic beta cells and the immortal human PANC-1 epithelial cell line. Functional studies demonstrated glucose sensitivity and responsiveness to known modulators of insulin secretion. Western blot, RT-PCR, and immunohistochemistry showed expression of the major genes involved in proinsulin processing and the pancreatic beta cell stimulus-secretion pathway including PC1/3, PC2, GLUT-1, glucokinase, and K-ATP channel complex (Sur1 and Kir6.2) and the voltage-dependent L-type Ca(2+) channel. The cells stained positively for insulin, and 1.1B4 cells were used to demonstrate specific staining for insulin, C-peptide, and proinsulin together with insulin secretory granules by electron microscopy. Analysis of metabolic function indicated intact mechanisms for glucose uptake, oxidation/utilization, and phosphorylation by glucokinase. Glucose, alanine, and depolarizing concentrations of K(+) were all able to increase [Ca(2+)](i) in at least two of the cell lines tested. Insulin secretion was also modulated by other nutrients, hormones, and drugs acting as stimulators or inhibitors in normal beta cells. Subscapular implantation of the 1.1B4 cell line improved hyperglycemia and resulted in glucose lowering in streptozotocin-diabetic SCID mice. These novel human electrofusion-derived beta cell lines therefore exhibit stable characteristics reminiscent of normal pancreatic beta cells, thereby providing an unlimited source of human insulin-producing cells for basic biochemical studies and pharmacological drug testing plus proof of concept for cellular insulin replacement therapy.Item FUNCTIONAL EXAMINATION OF MICROENCAPSULATED BIOENGINEERED INSULIN-SECRETING BETA-CELLS(Wiley, 2001-06) Hamid, M.; McCluskey, Jane T.; McClenaghan, N. H.; Flatt, P. R.Clonal insulin-secreting BRIN-BD11 cells engineered by electrofusion were encapsulated inside natrium alginate beads and cultured in RPMI 1640 culture media. Acute insulin secretory responses to glucose and amino acids were compared between microencapsulated cells and non-encapsulated cells maintained in monolayer culture. Encapsulated cells exhibited a 1.5-fold, 2.9-fold and 4.2-fold increase (P< 0.001) in insulin release in response to 16.7 mmol/l glucose, 10 mmol/l L-arginine and 10 mmol/l L-alanine respectively. Insulin output by non-encapsulated cells was approximately 30% greater but the relative magnitudes of responses were similar. This is the first study to demonstrate the stability of cellular engineered insulin-secreting cells encapsulated in alginate beads, illustrating the utility of this approach for cellular engineering and potential transplantation in diabetes. Copyright 2001 Academic Press.