Browsing by Person "Liu, Hui-Kang"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Deleterious Effects of Supplementation with Dehydroepiandrosterone Sulphate or Dexamethasone on Rat Insulin-Secreting Cells Under In Vitro Culture Condition(Highwire, 2006-02) Liu, Hui-Kang; Green, Brian D.; McClenaghan, Neville H.; McCluskey, Jane T.; Flatt, Peter R.Dehydroepiandrosterone (DHEA) and glucocorticoids are steroid hormones synthesised in the adrenal cortex. Administration of DHEA, its sulphate derivative, DHEAS, and more controversially dexamethasone (DEX), a synthetic glucocorticoid, have beneficial effects in diabetic animals. Cultivating BRIN-BD11 cells for 3 days with either DHEAS (30 muM) or DEX (100 nM), reduced total cell number and reduced cell viability and cellular insulin content. DHEAS-treated cells had poor glucose responsiveness and regulated insulin release, coupled with reduced basal insulin release. In contrast, DEX-treated cells lacked responsiveness to glucose and membrane depolarisation, and both protein kinase A (PKA) and protein kinase C (PKC) secretory pathways were desensitised. Therefore, we conclude that this steroid hormone and synthetic glucocorticoid are not beneficial to pancreatic beta-cells in vitro.Item Effects of long-term exposure to nicotinamide and sodium butyrate on growth, viability, and the function of clonal insulin secreting cells.(Taylor & Francis, 2004-02) Liu, Hui-Kang; Green, Brian D.; Flatt, Peter R.; McClenaghan, Neville H.; McCluskey, Jane T.The B vitamin nicotinamide (NIC), commonly known as niacin, is currently in trial as a potential means of preventing Type 1 diabetes in first-degree relatives of affected individuals. Sodium butyrate (BUT) a common dietary micronutrient has also been reported to have beneficial effects on the differentiation and function of pancreatic beta cells. Cultured rat insulin-secreting BRIN-BD11 cells were used to investigate the effects of 3 days exposure to NIC (10 mM) and BUT (1 mM) both alone and in combination on beta cell function. Culture with NIC and/or BUT resulted in reduction of growth, insulin content and basal insulin secretion. BUT additionally decreased cell viability whilst NIC had no significant effect. Treatment with either agent abolished beta cell glucose sensitivity but insulin secretory responsiveness to a wide range of beta cell stimulators, including a depolarizing concentration of K+, elevation of Ca2+ and activation of adenylate cyclase and protein kinase C, were enhanced. These data illustrate that long term exposure to NIC and BUT has both positive and negative effects on the function of insulin-secreting cells.Item Long-term beneficial effects of vanadate, tungstate, and molybdate on insulin secretion and function of cultured beta cells.(Wolters Kluwer, 2004-05) Liu, Hui-Kang; Green, Brian D.; McClenaghan, Neville H.; McCluskey, Jane T.; Flatt, Peter R.The ultratrace elements vanadate, tungstate, and molybdate exhibit significant antihyperglycemic effects in both type 1 and 2 diabetic animals, but possible effects on the function of pancreatic beta cells are understudied. In the present study, clonal BRIN BD11 cells were cultured for 3 days with each ultratrace element to establish doses lacking detrimental effects on viable beta cell mass. Vanadate treatment (4 micromol/L) had no effect on cellular insulin content but improved glucose-induced insulin secretory responsiveness. However, insulin secretion mediated by PKA and PKC activation was desensitized in vanadate-treated cells. Culture with tungstate (300 micromol/L) and molybdate (1 mmol/L) increased cellular insulin content and enhanced basal insulin release and the responsiveness to glucose and a wide range of other secretagogues. These observations suggest significant effects of ultratrace elements on pancreatic beta cells that may contribute to their antihyperglycemic action.