Browsing by Person "Wilson, Rona"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Bovine PrP expression levels in transgenic mice influence transmission characteristics of atypical bovine spongiform encephalopathy(Microbiology Society, 2012-05-01) Wilson, Rona; Hart, Patricia; Piccardo, Pedro; Hunter, Nora; Casalone, Cristina; Baron, Thierry; Barron, RonaUntil recently, transmissible spongiform encephalopathy (TSE) disease in cattle was thought to be caused by a single agent strain, bovine spongiform encephalopathy (BSE) (classical BSE or BSE-C). However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. These atypical BSE isolates have been previously transmitted to a range of transgenic mouse models overexpressing PrP from different species at different levels, on a variety of genetic backgrounds. To control for genetic background and expression level in the analysis of these isolates, we performed here a comprehensive comparison of the neuropathological and molecular properties of all three BSE agents (BASE, BSE-C and BSE-H) upon transmission into the same gene-targeted transgenic mouse line expressing the bovine prion protein (Bov6) and a wild-type control of the same genetic background. Significantly, upon challenge with these BSE agents, we found that BASE did not produce shorter survival times in these mice compared with BSE-C, contrary to previous studies using overexpressing bovine transgenic mice. Amyloid plaques were only present in mice challenged with atypical BSE and neuropathological features, including intensity of PrP deposition in the brain and severity of vacuolar degeneration were less pronounced in BASE compared with BSE-C-challenged mice.Item Characterization of an unusual transmissible spongiform encephalopathy in goat by transmission in knock-in transgenic mice(Microbiology Society, 2013-08-01) Wilson, Rona; King, Declan; Hunter, Nora; Goldmann, Wilfred; Barron, RonaBovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder of cattle, and its transmission to humans through contaminated food is thought to be the cause of the variant form of Creutzfeldt–Jakob disease. BSE is believed to have spread from the recycling in cattle of ruminant tissue in meat and bone meal (MBM). However, during this time, sheep and goats were also exposed to BSE-contaminated MBM. Both sheep and goats are experimentally susceptible to BSE, and while there have been no reported natural BSE cases in sheep, two goat BSE field cases have been documented. While cases of BSE are rare in small ruminants, the existence of scrapie in both sheep and goats is well established. In the UK, during 2006–2007, a serious outbreak of clinical scrapie was detected in a large dairy goat herd. Subsequently, 200 goats were selected for post-mortem examination, one of which showed biochemical and immunohistochemical features of the disease-associated prion protein (PrPTSE) which differed from all other infected goats. In the present study, we investigated this unusual case by performing transmission bioassays into a panel of mouse lines. Following characterization, we found that strain properties such as the ability to transmit to different mouse lines, lesion profile pattern, degree of PrP deposition in the brain and biochemical features of this unusual goat case were neither consistent with goat BSE nor with a goat scrapie herdmate control. However, our results suggest that this unusual case has BSE-like properties and highlights the need for continued surveillance.Item Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein(Microbiology Society, 2012-07-01) Wilson, Rona; Plinston, Chris; Hunter, Nora; Casalone, Cristina; Corona, Cristiano; Tagliavini, Fabrizio; Suardi, SIlvia; Ruggerone, Margherita; Graziano, Silvia; Sbriccoli, Marco; Cardone, Franco; Pocchiari, Maurizio; Ingrosso, Loredana; Baron, Thierry; Richt, Juergen; Andreoletti, Olivier; Simmons, Marion; Lockey, Richard; Manson, Jean C.; Barron, RonaThe association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.Item Presence of subclinical infection in gene-targeted human prion protein transgenic mice exposed to atypical bovine spongiform encephalopathy(2013-12-01) Wilson, Rona; Dobie, Karen; Hunter, Nora; Casalone, Cristina; Baron, Thierry; Barron, RonaThe transmission of bovine spongiform encephalopathy (BSE) to humans, leading to variant Creutzfeldt–Jakob disease has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health. Until recently, TSE disease in cattle was thought to be caused by a single agent strain, BSE, also known as classical BSE, or BSE-C. However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. To model the risk to human health, we previously inoculated these two forms of atypical BSE (BASE and BSE-H) into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP) (HuTg) but were unable to detect any signs of TSE pathology in these mice. However, despite the absence of TSE pathology, upon subpassage of some BASE-challenged HuTg mice, a TSE was observed in recipient gene-targeted bovine PrP Tg (Bov6) mice but not in HuTg mice. Disease transmission from apparently healthy individuals indicates the presence of subclinical BASE infection in mice expressing human PrP that cannot be identified by current diagnostic methods. However, due to the lack of transmission to HuTg mice on subpassage, the efficiency of mouse-to-mouse transmission of BASE appears to be low when mice express human rather than bovine PrP.