The Effect of Hypoxia on G Protein Coupled (CB1) Receptor Gene Expression in Cortical B50 Neurons in Culture
| dc.contributor.author | Ibegbu, A. O. | |
| dc.contributor.author | Mullaney, I. | |
| dc.contributor.author | Fyfe, Lorna | |
| dc.contributor.author | McBean, Douglas | |
| dc.date.accessioned | 2018-06-29T21:33:36Z | |
| dc.date.available | 2018-06-29T21:33:36Z | |
| dc.date.issued | 2011-02-10 | |
| dc.description | The authors acknowledge Queen Margaret University, Edinburgh for the award of the Martlet research Scholarship and the Ahmadu Bello University Zaria-Nigeria for awarding the first author study fellowship to undertake this research studies. The authors would like to thank Promega Corporation for generously providing us with free samples and assay kits and reagents. Our special thanks go to Drs Paul Kelly and Linda Ferrington of the Centre for Neuroscience, University of Edinburgh for their help and guidance in RT-PCR technique. Our thanks goes to Dr Elizabeth Fashola- Stone, Technical Manager European collection of cell cultures (ECACC), for providing specialist and technical advice on the use of B50 cells. | |
| dc.description.abstract | Hypoxia adversely affects cells and tissues, and neuronal cells in particular have been shown to be more susceptible to the injurious effects of hypoxia in which they may begin to die when oxygen supply is reduced or completely eliminated. Cannabinoid (CB1) receptor agonists have been shown to elicit several Central Nervous System (CNS) effects, mediated via G protein-coupled receptors. The aim of this study was to examine the effect of hypoxia on G protein coupled receptor (CB1) gene expression in cortical neuronal B50 cell lines in culture. The B50 cells were cultured in normoxia (21% O2; 5% CO2) and hypoxia (5% O2; 5% CO2), and were treated with cannabinoid agonists to determine their effects on hypoxia-induced changes. Three cannabinoid agonists [Win55,212-2 mesylate (Win), arachidonoylethanolamide (AEA) and 2- arachidonylglycerol (2-AG)], were administered to the cells as treatment for 48 hours after 48hours of initial culture for a total of 96hours of culture in hypoxic conditions at concentrations of 10, 50 and 100 nM. The levels of G-protein coupled receptor (CB1) mRNAs were assessed using RT-PCR. The results showed that hypoxia induced morphological changes in B50 cells in hypoxia while the CB1 RT-PCR mRNA levels showed no appreciable changes in normal, hypoxic and treated cells. The results show that B50 neuronal cells are susceptible to damage and injurious effects of hypoxia, as are most brain cells and the cannabinoid agonist treatments showed there were no changes in the level of CB1 receptor gene expression due to hypoxia or agonist treatment in neuronal B50 cells in culture. | |
| dc.description.eprintid | 2724 | |
| dc.description.faculty | sch_die | |
| dc.description.ispublished | pub | |
| dc.description.number | 1 | |
| dc.description.referencetext | Aguado, T., A. Carracedo, B. Julien, G. Velasco, G. Milman, R. Mechoulam, L. Alvarez, M. Guzman and I. Galve-Roperh, 2007. Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J. Biol. Chem., 282(9): 6854-6862. Begg, M., P. Pacher, S. Batkai, D. Osei-Hyiaman, L. Offertaler, F.M. Mo, J. Liu and G. Kunos 2005. Evidence for novel cannabinoid receptors. Pharmacol Ther., 106(2):133-145. Berghuis, P., M.B. Dobszay, R.M. Ibanez, P. Ernfors and T. Harkany, 2004. Turning the heterogeneous into homogeneous: studies on selectively isolated GABAergic interneuron subsets. Int. J. Dev. Neurosci., 22(7): 533-543 Berghuis, P., M.B. Dobszay, X. Wang, S. Spano, F. Ledda, K.M. Sousa, G. Schulte, P. Ernfors, K. Mackie, G. Paratcha, Y.L. Hurd and T. Harkany, 2005. Endo-cannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc Natl Acad Sci USA, 102(52): 19115-19120. Biegon, A., 2004. Cannabinoids as neuroprotective agents in traumatic brain injury. Curr. Pharm. Des., 10(18): 2177-2183. Burdyga, G., S. Lal, A. Varro, R. Dimaline, D.G. Thompson and G.J. Dockray, 2004. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J. Neurosci., 24(11): 2708-2715. Bustin, S.A., 2002. Quantification of mRNA using realtime reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol., 29(1): 23-39. Carter, G.T. and P. Weydt, 2002. Cannabis: old medicine with new promise for neurological disorders. Curr. Opin. Invest. Drugs, 3(3): 437-440. Br. J. Pharm. Toxicol., 2(1): 27-36, 2011 35 Chang, W.C., J.D. Capite, C. Nelson and A.B. Parekh, 2007. All-or-None activation of CRAC channels by agonist elicits graded responses in populations of mast cells. J. Immunol., 179: 5255-5263. Chen, J., C.T. Lee, S. Errico, X. Deng, J.L. Cadet and W.J. Freed, 2005. Protective effects of Delta(9)- tetrahydrocannabinol against N-methyl-d-aspartateinduced AF5 cell death. Brain Res. Mol. Brain Res., 134(2): 215-225. Cohen, C.D., K. Frach, D. Schlndorff and M. Kretzler, 2002. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int., 61(1): 133-140. Davies, S.N., R.G. Pertwee and G. Riedel, 2002. Functions of cannabinoid receptors in the hippocampus. Neuropharmacology, 42(8): 993-1007. Devane, W.A., L. Hanus, A. Breuer, R.G. Pertwee, L.A. Stevenson, G. Griffin, D. Gibson, A. Mandelbaum, A. Etinger and R. Mechoulam, 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258(5090): 1946-1949. Downer, E.J., M.P. Fogarty and V.A. Campbell, 2003. Tetrahydrocannabinol-induced neurotoxicity depends on CB1 receptor-mediated c-Jun N-terminal kinase activation in cultured cortical neurons. Br. J. Pharmacol., 140: 547-557. Drysdale, A.J. and B. Platt, 2003. Cannabinoids: mechanisms and therapeutic applications in the CNS. Curr. Med. Chem., 10(24): 2719-2732. Esposito, G., A. Ligresti, A.A. Izzo, T. Bisogno, M. Ruvo, M. Di Rosa, V. Di Marzo and T. Iuvone, 2002. The endocannabinoid system protects rat glioma cells against HIV-1 Tat protein-induced cytotoxicity. Mechanism and regulation. J. Biol. Chem., 27; 277 (52): 50348-50354. Galve-Roperh, I., T. Aguado, J. Palazuelos and M. Guzmn, 2007. The endocannabinoid system and neurogenesis in health and disease. Neuroscientist, 13(2): 109-114. Gardner, F., 2006. Marijuana Might Really Make you Cool. In: Cockburn, A. and J. Clair (Eds.), Counter Pounch. Retrieved from:http://www.counterpunch. org/ gardner09092005.html. Glass, M. and C.C. Felder, 1997. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: Evidence for a Gs linkage to the CB1 receptor. J. Neurosci., 17(14): 5327-5333. Gnanapavan, S., B. Kola, S.A. Bustin, D.G. Morris, P. McGee, P. Fairclough, S. Bhattacharya, R. Carpenter, A.B. Grossman and M. Korbonits, 2002. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab, 87(6): 2988-2991. Grundy, R.I., 2002. The therapeutic potential of the cannabinoids in neuroprotection. Expert Opin. Inv. Drug., 11(10): 1365-1374. Hansen, H.H., I. Azcoitia, S. Pons, J. Romero, L.M. Garcia-Segura, J.A. Ramos, H.S. Hansen, and J. Fernandez-Ruiz, 2002. Blockade of cannabinoid CB(1) receptor function protects against in vivo disseminating brain damage following NMDAinduced excitotoxicity. J. Neurochem., 82(1): 154-158. Harkany, T., M. Guzmn, I. Galve-Roperh, P. Berghuis, L.A. Devi and K. Mackie, 2007. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol. Sci., 28(2): 83-92. Hillard, C.J., S. Manna, M.J. Greenberg, R. DiCamelli, R.A. Ross, L.A. Stevenson, V. Murphy, R.G. Pertwee and W.B. Campbell, 1997. Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J. Pharmacol. Exp. Ther., 289(3): 1427-1433. Howlett, A.C., 2004. Efficacy in CB1 receptor-mediated signal transduction. Br. J. Pharmacol., 142(8): 1209-1218. Van-Ham, I. and Y. Oron, 2005. Go G-proteins mediate rapid heterologous desensitization of G-protein coupled receptors in Xenopus oocytes. J. Cell Physiol., 204(2): 455-462. Jordan, J.D., J.C. He, N.J. Eungdamrong, I. Gomes, W. Ali, T. Nguyen, T.G. Bivona, M.R. Philips, L.A. Devi and R. Iyengar, 2005. Cannabinoid receptor-induced neurite outgrowth is mediated by Rap1 activation through Go/i-triggered proteasomal degradation of Rap1GAP II. J. Biol. Chem., 280: 11413-11421. Kearn, C.S., M.J. Greenberg, R. DiCamelli, K. Kurzawa and C.J. Hillard, 1999. Relationships between ligand affinities for the cerebellar cannabinoid receptor CB1 and the induction of GDP/GTP exchange. J. Neurochem., 72(6): 2379-2387. Lalonde, M.R., C.A. Jollimore, K. Stevens, S. Barnes and ME. Kelly, 2006. Cannabinoid receptor-mediated inhibition of calcium signaling in rat retinal ganglion cells. Mol. Vis., 12: 1160-1166. Liu, J., P. Feldman and T.D. Chung, 2002. Real-time monitoring in vitro transcription using molecular beacons. Anal. Biochem., 300(1): 40-45. Mackie, K., 2006. Cannabinoid Receptors as therapeutic targets. Ann. Rev. Pharm. Toxi., 46: 101-122. Matsuda, L.A., S.J. Lolait, M.J. Brownstein, A.C. Young and T.I. Bonner, 1990. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346(6284): 561-564. Malan, T.P., M.M. Ibrahim, H. Deng, Q. Liu, H.P. Mata, T. Vanderah, F. Porreca and A Makriyannis, 2001. CB2 cannabinoid receptor-mediated peripheral antinociception. Pain, 93(3): 239-245. Br. J. Pharm. Toxicol., 2(1): 27-36, 2011 36 Mechoulam, R., D. Panikashvili and E. Shohami, 2002. Cannabinoids and brain injury: Therapeutic implications. Trends Mol. Med., 8(2): 58-61. Munro, S., K.L. Thomas and M. Abu-Shaar, 1993. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 365(6441): 61-65. Nie, J. and D.L. Lewis, 2001. Structural domains of the CB1 cannabinoid receptor that contribute to constitutive activity and G-protein sequestration. J. Neurosci., 21(22): 8758-8764. Nolan, T., R.E. Hands and S.A. Bustin, 2006. Quantification of mRNA using real-time RT-PCR. Nat. Protoc., 1(3): 1559-1582. Orlando, C., P. Pinzani and M. Pazzagli, 1998. Developments in quantitative PCR. Clin. Chem. Lab. Med., 36(5): 255-269. Park, F., D.L. Mattson, L.A. Roberts and A.W. Cowley, 1997. Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. Am. J. Physiol., 273(5 Pt 2): R1742-R1748. Prasad, M., I.M. Fearon, M. Zhang, M. Laing, C. Vollmer and C.A. Nurse, 2001. Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: Role in chemosensory signalling. J. Physiol., 537(Pt 3): 667-677. Pryce, G., Z. Ahmed, D.J. Hankey, S.J. Jackson, J.L. Croxford, J.M. Pocock, C. Ledent, A. Petzold, A.J. Thompson, G. Giovannoni, M.L. Cuzner and D. Baker, 2003. Cannabinoids inhibit Neuro degeneration in models of multiple sclerosis. Brain, 126(Pt 10): 2191-2202 Sarne, Y. and R. Mechoulam, 2005. Cannabinoids: between neuroprotection and neurotoxicity. Curr. Drug Targets CNS Neurol Disord, 4(6): 677-684. Showalter, S.A., N.A. Baker, C. Tang and K.B. Hall, 2005. Iron responsive element RNA flexibility described by NMR and isotropic reorientational eigenmode dynamics. J. Biomol. NMR, 32(3): 179-193. Slessareva, J.E., H. Ma, K.M. Depree, L.A. Flood, H. Bae, T.M. Cabrera-Vera, H.E. Hamm and S.G. Graber, 2003. Closely related G-protein-coupled receptors use multiple and distinct domains on Gprotein alpha-subunits for selective coupling. J. Biol. Chem., 278(50): 50530-50536. Soderstrom, K. and F. Johnson, 2000. CB1 cannabinoid receptor expression in brain regions associated with zebra finch song control. Brain Res., 857(1-2): 151-157. Steiner, H., T.I. Bonner, A.M. Zimmer, S.T. Kitai and A. Zimmer, 1999. Altered gene expression in striatal projection neurons in CB1cannabinoid receptor knockout mice. Proc. Natl. Acad. Sci. USA., 1(96): 5786-5790. Sugiura, T., S. Kondo, A. Sukagawa, S. Nakane, A. Shinoda, K. Itoh, A. Yamashita and K. Waku, 1995. 2-Arachidonoylgylcerol: A possible endogenous cannabinoid receptor ligand in brain. Biochl Bio. Res. Comns., 215(1): 89-97. Vsquez, C. and D.L. Lewis, 1999. The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J. Neurosci., 19(21): 9271-9280. Wall, S.J. and D.R. Edwards, 2002. Quantitative reverse transcription-polymerase chain reaction (RT-PCR): a comparison of primer-dropping, competitive, and real-time RT-PCRs. Anal. Biochem., 300(2): 269-273. Wang, J., Q. Gao, J. Shen, T.M. Ye and Q. Xia, 2007. Kappa-opioid receptor mediates the cardioprotective effect of ischemic postconditioning. Zhejiang Da Xue Xue Bao Yi Xue Ban, 36(1): 41-47. Yao, L., K. McFarland, P. Fan, Z. Jiang, T. Ueda and I. Diamond, 2006. Adenosine A2a blockade prevents synergy between :-opiate and cannabinoid CB1 receptors and eliminates heroin-seeking behaviour in addicted rats. Proc. Natl. Acad. Sci. USA, 103(20): 7877-7882. Yuen, T., W. Zhang, B.J. Ebersole and S.C. Sealfon, 2002. Monitoring G-protein-coupled receptor signaling with DNA microarrays and real-time polymerase chain reaction. Methods Enzymol., 345: 556-569. Zhang, J.H., T. Lo, G. Mychaskiw and A. Colohan, 2005. Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology, 12(1): 63-77. Zhang, J., H. Qian, P. Zhao, S.S. Hong and Y. Xia, 2006. Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke, 37(4): 1094-1099. Zhuang, S.Y., A. Boon, S.A. McLeod, S. Hayashizaki, C. Padgett, R.E. Hampson and S.A. Deadwyler, 2001. Protection from NMDA toxicity by cannabinoids involves ryanodine-sensitive calcium. Soc. Neurosci. Abstract, 27: 668.11. | |
| dc.description.status | pub | |
| dc.description.volume | 2 | |
| dc.format.extent | 27-36 | |
| dc.identifier | ER2724 | |
| dc.identifier.citation | Ibegbu, A., Mullaney, I., Fyfe, L. & McBean, D. (2011) The Effect of Hypoxia on G Protein Coupled (CB1) Receptor Gene Expression in Cortical B50 Neurons in Culture, British Journal of Pharmacology and Toxicology, 2(1), pp. 27-36. | |
| dc.identifier.issn | 2044-2467 | |
| dc.identifier.uri | http://www.maxwellsci.com/jp/abstract.php?jid=BJPT&no=92&abs=05 | |
| dc.identifier.uri | https://eresearch.qmu.ac.uk/handle/20.500.12289/2724 | |
| dc.publisher | Maxwell Scientific Organization, | |
| dc.relation.ispartof | British Journal of Pharmacology and Toxicology | |
| dc.subject | Cannabinoid (Cb1) Receptor | |
| dc.subject | Cannabinoid Agonist | |
| dc.subject | G-Protein Coupled Receptor | |
| dc.subject | Hypoxia, Messenger Rna | |
| dc.subject | Reverse Transcription-Pcr | |
| dc.title | The Effect of Hypoxia on G Protein Coupled (CB1) Receptor Gene Expression in Cortical B50 Neurons in Culture | |
| dc.type | article | |
| dcterms.accessRights | public | |
| qmu.author | McBean, Douglas | |
| qmu.author | Fyfe, Lorna | |
| rioxxterms.type | article |
Files
Original bundle
1 - 1 of 1