Repository logo
 

Dietetics, Nutrition and Biological Sciences

Permanent URI for this collectionhttps://eresearch.qmu.ac.uk/handle/20.500.12289/23

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Properties of partially denatured whey protein products 2: Solution flow properties
    (Elsevier, 2015-12-22) Zhang, Zhuo; Arrighi, Valeria; Campbell, Lydia; Lonchamp, Julien; Euston, Stephen R.
    Partial denaturation of whey protein concentrates has been used to make protein powders with differing viscosity properties. PDWPC particles have been manufactured to have a range of aggregate sizes (3.3–17 μm) and structures (compact particle gel to open fibrillar gel). In solution the PDWPC samples show complex viscosity behaviour dependant on the size and morphology of the PDWPC aggregate particles. For the same protein content the compact particles have a lower viscosity than open, fibrillar particles. The viscosity also appears to depend on the surface structure of the particles, with particles of a similar size, but having a rougher surface giving higher viscosity than similar smooth particles. The viscosity of the WPC, MPWPC and PDWPC solutions are explained in terms of the postulated interactions between the protein aggregates in solution.
  • Thumbnail Image
    Item
    Properties of partially denatured whey protein products: Viscoelastic properties
    (Elsevier, 2018-02-07) Euston, Stephen R.; Lonchamp, Julien; Campbell, Lydia; Arrighi, V.; Zhang, Z.
    Partially denatured whey protein products (PDWPC's) can be classified based on the viscoelastic properties of their solutions. Strain sweeps show that PDWPC-A and -B and microparticulated WPC (MPWPC) with compact, spherical aggregated particles exhibit a strong strain overshoot. PDWPC-C and -D, on the other hand, which have open, elongated porous particles show a weak strain overshoot. The concentration dependence of the elastic modulus G' in the linear viscoelastic region has a biphasic power law dependence with concentration for all protein products studied, except for WPC where G' is independent of protein concentration. Frequency sweeps suggest that MPWC solutions form a strong physical gel at all concentrations above 14% (w/w). PDWPC-A and -B form weak gels over the same concentration range. PDWPC-C and -D also form weak gels at 14% protein (w/w) but strong physical gels at higher concentrations. The frequency dependence of G' and G'' for all aggregated proteins show a power law dependence indicating fractal type structures. For all solutions above a critical concentration, the fractal dimensions span the range 1.6-2.3, indicating a range of gel network structures from open and diffuse to compact and dense. Adherence to the empirical Cox-Merz rule was observed in PDWPC-A, -C and -D at concentrations of 14 and 16% (w/w) protein, suggesting liquid-like behaviour. At higher protein concentrations the deviations from the Cox-Merz rule suggest more pronounced elasticity in the structure. For PDWPC-B, the behaviour is complex, with deviation from the Cox-Merz rule at low frequencies/shear rates, but correspondence at higher frequencies/shear rates at all concentrations. This indicates a frequency-dependent change from liquid-like behaviour over long timescale deformations, to a solid-like behaviour at short timescale deformations. MPWPC solutions of all concentrations do not follow the Cox-Merz rule, suggesting solid-like behaviour. The PDWPCs exhibit a complex rheological behaviour which suggests they could be versatile thickening, texturizing and fat replacement