Dietetics, Nutrition and Biological Sciences
Permanent URI for this collectionhttps://eresearch.qmu.ac.uk/handle/20.500.12289/23
Browse
2 results
Search Results
Item The Effect of Hypoxia on G Protein Coupled (Opioid) Receptor Gene Expression in Cortical B50 Neurons in Culture(Maxwell Scientific Organization,, 2011-04-30) Ibegbu, A. O.; Mullaney, I.; Fyfe, Lorna; McBean, DouglasHypoxia adversely affects cells and tissues, and neuronal cells in particular have been shown to be more susceptible to the injurious effects of hypoxia in which they may begin to die when oxygen supply is reduced or completely eliminated. Opioid receptor agonists have been shown to elicit several central nervous system effects, mediated via G protein-coupled receptors. The aim of this study was to study the effect of hypoxia on G protein coupled receptor gene expression using mu opioid receptor as a case study in cortical neuronal B50 cell lines in culture. The B50 cells were cultured in normoxia (21% O2; 5% CO2) and hypoxia (5% O2; 5% CO2), and were treated with opioid agonists to determine their effects on hypoxia-induced changes. Three opioid agonists {DAMGO(_), DSLET(*) and ICI--199,441(6)}, were administered to the cells as treatment for 48 hours after 48 hours of initial culture for a total of 96 hours of culture in hypoxic conditions at concentrations of 10, 50 and 100 :M. The levels of G-protein coupled receptor (mu opioid) mRNAs were assessed using RT-PCR. The results showed that hypoxia induced morphological changes in B50 cells in hypoxia while the mu opioid RT-PCR mRNA levels showed no appreciable changes in normal, hypoxic and treated cells. The results show that B50 neuronal cells are susceptible to damage and injurious effects of hypoxia, as are most brain cells and the opioid agonist treatments showed there were no changes in the level of mu opioid receptor gene expression due to hypoxia or agonist treatment in neuronal B50 cells in culture.Item The Effects of Hypoxia and Opioid Receptor Agonists Treatment in Cortical B50 Neuronal Cells in Culture(Uludag University Applied Research Center for Agriculture (ARCA) and Applied Research Center for Environmental Problems (ARCEP), Uludag University Gorukle Campus, 16059 Bursa-Turkey, 2012-12) Ibegbu, A. O.; Fyfe, Lorna; McBean, Douglas; Mullaney, I.Hypoxia has been implicated in nerve cell deaths in many neurological disorders and opioid receptor agonists have some positive benefits on the nervous system. The aim of the present work was to investigate the effects of hypoxia and opioid receptor agonists' treatment on the morphology of B50 cells cultured in hypoxia using neuronal pattern and pattern formation as a case study. The B50 cells were cultured in normal incubator (21%O2; 5% CO2) as the control group and hypoxic incubator (5%O2; 5% CO2) as the experimental group and three opioid receptor agonists namely DAMGO (_), DSLET () and ICI-199,441 () were administered to the cells for 48 hours as treatment against hypoxia after 48 hours of culture at 10_M, 50_M and 100_M concentrations. Neuronal morphology and wellbeing was assessed using same field morphological assessment and lactate dehydrogenase leakage (LDH). The result showed groups of dead and degenerating B50 neuronal cells, altered neuronal pattern and pattern formation and some significant changes (P<0.05) in cellular levels of LDH leakage in normal, hypoxic cells and cells treated with different agonists. The changes in morphology, neuronal pattern and LDH release indicate that hypoxia induced morphological and cellular changes in B50 cells in hypoxia and opioid agonists have some potential benefits in the treatment of hypoxia-induced changes in B50 cells in culture.