Repository logo
 

Dietetics, Nutrition and Biological Sciences

Permanent URI for this collectionhttps://eresearch.qmu.ac.uk/handle/20.500.12289/23

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    High Titers of Transmissible Spongiform Encephalopathy Infectivity Associated with Extremely Low Levels of PrPSc in Vivo
    (American Society for Biochemistry and Molecular Biology, 2007-10-08) Barron, Rona; Campbell, Susan L.; King, Declan; Bellon, Anne; Chapman, Karen E.; Williamson, R. Anthony; Manson, Jean C.
    Diagnosis of transmissible spongiform encephalopathy (TSE) disease in humans and ruminants relies on the detection in post-mortem brain tissue of the protease-resistant form of the host glycoprotein PrP. The presence of this abnormal isoform (PrPSc) in tissues is taken as indicative of the presence of TSE infectivity. Here we demonstrate conclusively that high titers of TSE infectivity can be present in brain tissue of animals that show clinical and vacuolar signs of TSE disease but contain low or undetectable levels of PrPSc. This work questions the correlation between PrPSc level and the titer of infectivity and shows that tissues containing little or no proteinase K-resistant PrP can be infectious and harbor high titers of TSE infectivity. Reliance on protease-resistant PrPSc as a sole measure of infectivity may therefore in some instances significantly underestimate biological properties of diagnostic samples, thereby undermining efforts to contain and eradicate TSEs.
  • Thumbnail Image
    Item
    Prion Seeding Activities of Mouse Scrapie Strains with Divergent PrPSc Protease Sensitivities and Amyloid Plaque Content Using RT-QuIC and eQuIC
    (Public Library of Science, 2012-11-05) Vascellari, Sarah; Orrù, Christina D.; Hughson, Andrew G.; King, Declan; Barron, Rona; Wilham, Jason M.; Baron, Gerald S.; Race, Brent; Pani, Alessandra
    Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.
  • Thumbnail Image
    Item
    Quantitative imaging of tissue sections using infrared scanning technology
    (Wiley, 2015-10-29) Eaton, Samantha L.; Cumyn, Elizabeth; King, Declan; Kline, Rachel A.; Carpanini, Sarah M.; Del-Pozo, Jorge; Barron, Rona; Wishart, Thomas M.
    Quantification of immunohistochemically (IHC) labelled tissue sections typically yields semi-quantitative results. Visualising infrared (IR) ‘tags’, with an appropriate scanner, provides an alternative system where the linear nature of the IR fluorophore emittance enables realistic quantitative fluorescence IHC (QFIHC). Importantly, this new technology enables entire tissue sections to be scanned, allowing accurate area and protein abundance measurements to be calculated from rapidly acquired images. Here, some of the potential benefits of using IR-based tissue imaging are examined, and the following are demonstrated. Firstly, image capture and analysis using IR-based scanning technology yields comparable area-based quantification to those obtained from a modern high-resolution digital slide scanner. Secondly, IR-based dual target visualisation and expression-based quantification is rapid and simple. Thirdly, IR-based relative protein abundance QIHC measurements are an accurate reflection of tissue sample protein abundance, as demonstrated by comparison with quantitative fluorescent Western blotting data. In summary, it is proposed that IR-based QFIHC provides an alternative method of rapid whole-tissue section low-resolution imaging for the production of reliable and accurate quantitative data.
  • Thumbnail Image
    Item
    PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions
    (Springer Nature, 2016-06-26) Barron, Rona; King, Declan; Jeffrey, Martin; McGovern, Gillian; Agarwal, Sonya; Gill, Andrew C.; Piccardo, Pedro
    Mammalian prions are unusual infectious agents, as they are thought to consist solely of aggregates of misfolded prion protein (PrP). Generation of synthetic prions, composed of recombinant PrP (recPrP) refolded into fibrils, has been utilised to address whether PrP aggregates are, indeed, infectious prions. In several reports, neurological disease similar to transmissible spongiform encephalopathy (TSE) has been described following inoculation and passage of various forms of fibrils in transgenic mice and hamsters. However, in studies described here, we show that inoculation of recPrP fibrils does not cause TSE disease, but, instead, seeds the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). Importantly, both WT-recPrP fibrils and 101L-recPrP fibrils can seed plaque formation, indicating that the fibrillar conformation, and not the primary sequence of PrP in the inoculum, is important in initiating seeding. No replication of infectious prions or TSE disease was observed following both primary inoculation and subsequent subpassage. These data, therefore, argue against recPrP fibrils being infectious prions and, instead, indicate that these pre-formed seeds are acting to accelerate the formation of PrP amyloid plaques in 101LL Tg mice. In addition, these data reproduce a phenotype which was previously observed in 101LL mice following inoculation with brain extract containing in vivo-generated PrP amyloid fibrils, which has not been shown for other synthetic prion models. These data are reminiscent of the “prion-like” spread of aggregated forms of the beta-amyloid peptide (Aβ), α-synuclein and tau observed following inoculation of transgenic mice with pre-formed seeds of each misfolded protein. Hence, even when the protein is PrP, misfolding and aggregation do not reproduce the full clinicopathological phenotype of disease. The initiation and spread of protein aggregation in transgenic mouse lines following inoculation with pre-formed fibrils may, therefore, more closely resemble a seeded proteinopathy than an infectious TSE disease.
  • Thumbnail Image
    Item
    Variable tau accumulation in murine models with abnormal prion protein deposits
    (Elsevier, 2017-11-07) Piccardo, Pedro; King, Declan; Brown, Deborah; Barron, Rona
    The conversion of cellular prion protein (PrP) into a misfolded isoform is central to the development of prion diseases. However, the heterogeneous phenotypes observed in prion disease may be linked with the presence of other misfolded proteins in the brain. While hyperphosphorylated tau (p.tau) is characteristic of Alzheimer's disease (AD), p.tau is also observed in human prion diseases. To explore this association in the absence of potential effects due to aging, drug treatment, agonal stage and postmortem delay we analyzed p.tau and PrP immunopositivity in mouse models. Analyses were performed on mice inoculated with prion agents, and mice with PrP amyloid in the absence of prion disease. We observed that p.tau was consistently present in animals with prion infectivity (models that transmit disease upon serial passage). In contrast, p.tau was very rarely observed or absent in mice with PrP amyloid plaques in the absence of prion replication. These data indicate that the formation of p.tau is not linked to deposition of misfolded PrP, but suggest that the interaction between replication of infectivity and host factors regulate the formation of p.tau and may contribute to the heterogeneous phenotype of prion diseases.
  • Thumbnail Image
    Item
    Microarray profiling emphasizes transcriptomic differences between hippocampal in vivo tissue and in vitro cultures
    (Oxford University Press, 2021-07-08) King, Declan; Skehel, Paul A.; Dando, Owen; Emelianova, Katie; Barron, Rona; Wishart, Thomas M.
    Primary hippocampal cell cultures are routinely used as an experimentally accessible model platform for the hippocampus and brain tissue in general. Containing multiple cell types including neurons, astrocytes and microglia in a state that can be readily analysed optically, biochemically and electrophysiologically, such cultures have been used in many in vitro studies. To what extent the in vivo environment is recapitulated in primary cultures is an on-going question. Here, we compare the transcriptomic profiles of primary hippocampal cell cultures and intact hippocampal tissue. In addition, by comparing profiles from wild type and the PrP 101LL transgenic model of prion disease, we also demonstrate that gene conservation is predominantly conserved across genetically altered lines.