Queen Margaret University logo
    • Login
    View Item 
    •   QMU Repositories
    • eResearch
    • School of Health Sciences
    • Dietetics, Nutrition and Biological Sciences
    • View Item
    •   QMU Repositories
    • eResearch
    • School of Health Sciences
    • Dietetics, Nutrition and Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Properties of partially denatured whey protein products: Viscoelastic properties

    View/Open
    Accepted version (664.7Kb)
    Date
    2018-02-07
    Author
    Euston, Stephen R.
    Lonchamp, Julien
    Campbell, Lydia
    Arrighi, V.
    Zhang, Z.
    Metadata
    Show full item record
    Citation
    Euston, S., Lonchamp, J., Campbell, L., Arrighi, V. & Zhang, Z. (2018) Properties of partially denatured whey protein products: Viscoelastic properties. Food Hydrocolloids, 80, pp. 298-308.
    Abstract
    Partially denatured whey protein products (PDWPC's) can be classified based on the viscoelastic properties of their solutions. Strain sweeps show that PDWPC-A and -B and microparticulated WPC (MPWPC) with compact, spherical aggregated particles exhibit a strong strain overshoot. PDWPC-C and -D, on the other hand, which have open, elongated porous particles show a weak strain overshoot. The concentration dependence of the elastic modulus G' in the linear viscoelastic region has a biphasic power law dependence with concentration for all protein products studied, except for WPC where G' is independent of protein concentration. Frequency sweeps suggest that MPWC solutions form a strong physical gel at all concentrations above 14% (w/w). PDWPC-A and -B form weak gels over the same concentration range. PDWPC-C and -D also form weak gels at 14% protein (w/w) but strong physical gels at higher concentrations. The frequency dependence of G' and G'' for all aggregated proteins show a power law dependence indicating fractal type structures. For all solutions above a critical concentration, the fractal dimensions span the range 1.6-2.3, indicating a range of gel network structures from open and diffuse to compact and dense. Adherence to the empirical Cox-Merz rule was observed in PDWPC-A, -C and -D at concentrations of 14 and 16% (w/w) protein, suggesting liquid-like behaviour. At higher protein concentrations the deviations from the Cox-Merz rule suggest more pronounced elasticity in the structure. For PDWPC-B, the behaviour is complex, with deviation from the Cox-Merz rule at low frequencies/shear rates, but correspondence at higher frequencies/shear rates at all concentrations. This indicates a frequency-dependent change from liquid-like behaviour over long timescale deformations, to a solid-like behaviour at short timescale deformations. MPWPC solutions of all concentrations do not follow the Cox-Merz rule, suggesting solid-like behaviour. The PDWPCs exhibit a complex rheological behaviour which suggests they could be versatile thickening, texturizing and fat replacement
    Official URL
    https://doi.org/10.1016/j.foodhyd.2017.12.039
    URI
    https://eresearch.qmu.ac.uk/handle/20.500.12289/5157
    Collections
    • Dietetics, Nutrition and Biological Sciences

    Queen Margaret University: Research Repositories
    Accessibility Statement | Repository Policies | Contact Us | Send Feedback | HTML Sitemap

     

    Browse

    All QMU RepositoriesCommunities & CollectionsBy YearBy PersonBy TitleBy QMU AuthorBy Research CentreThis CollectionBy YearBy PersonBy TitleBy QMU AuthorBy Research Centre

    My Account

    LoginRegister

    Queen Margaret University: Research Repositories
    Accessibility Statement | Repository Policies | Contact Us | Send Feedback | HTML Sitemap