Queen Margaret University logo
    • Login
    View Item 
    •   QMU Repositories
    • eResearch
    • School of Health Sciences
    • Dietetics, Nutrition and Biological Sciences
    • View Item
    •   QMU Repositories
    • eResearch
    • School of Health Sciences
    • Dietetics, Nutrition and Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Effect of Hypoxia on G Protein Coupled (CB1) Receptor Gene Expression in Cortical B50 Neurons in Culture

    View/Open
    2724.pdf (525.0Kb)
    Date
    2011-02-10
    Author
    Ibegbu, A. O.
    Mullaney, I.
    Fyfe, Lorna
    McBean, Douglas
    Metadata
    Show full item record
    Citation
    Ibegbu, A., Mullaney, I., Fyfe, L. & McBean, D. (2011) The Effect of Hypoxia on G Protein Coupled (CB1) Receptor Gene Expression in Cortical B50 Neurons in Culture, British Journal of Pharmacology and Toxicology, 2(1), pp. 27-36.
    Abstract
    Hypoxia adversely affects cells and tissues, and neuronal cells in particular have been shown to be more susceptible to the injurious effects of hypoxia in which they may begin to die when oxygen supply is reduced or completely eliminated. Cannabinoid (CB1) receptor agonists have been shown to elicit several Central Nervous System (CNS) effects, mediated via G protein-coupled receptors. The aim of this study was to examine the effect of hypoxia on G protein coupled receptor (CB1) gene expression in cortical neuronal B50 cell lines in culture. The B50 cells were cultured in normoxia (21% O2; 5% CO2) and hypoxia (5% O2; 5% CO2), and were treated with cannabinoid agonists to determine their effects on hypoxia-induced changes. Three cannabinoid agonists [Win55,212-2 mesylate (Win), arachidonoylethanolamide (AEA) and 2- arachidonylglycerol (2-AG)], were administered to the cells as treatment for 48 hours after 48hours of initial culture for a total of 96hours of culture in hypoxic conditions at concentrations of 10, 50 and 100 nM. The levels of G-protein coupled receptor (CB1) mRNAs were assessed using RT-PCR. The results showed that hypoxia induced morphological changes in B50 cells in hypoxia while the CB1 RT-PCR mRNA levels showed no appreciable changes in normal, hypoxic and treated cells. The results show that B50 neuronal cells are susceptible to damage and injurious effects of hypoxia, as are most brain cells and the cannabinoid agonist treatments showed there were no changes in the level of CB1 receptor gene expression due to hypoxia or agonist treatment in neuronal B50 cells in culture.
    URI
    http://www.maxwellsci.com/jp/abstract.php?jid=BJPT&no=92&abs=05
    URI
    https://eresearch.qmu.ac.uk/handle/20.500.12289/2724
    Collections
    • Dietetics, Nutrition and Biological Sciences

    Queen Margaret University: Research Repositories
    Accessibility Statement | Repository Policies | Contact Us | Send Feedback | HTML Sitemap

     

    Browse

    All QMU RepositoriesCommunities & CollectionsBy YearBy PersonBy TitleBy QMU AuthorBy Research CentreThis CollectionBy YearBy PersonBy TitleBy QMU AuthorBy Research Centre

    My Account

    LoginRegister

    Queen Margaret University: Research Repositories
    Accessibility Statement | Repository Policies | Contact Us | Send Feedback | HTML Sitemap